Même si cela surcharge un peu les notations je note $\Delta(P)$ et non ΔP l’image de P par Δ.

Partie I : Etude de Δ

1. base de $\mathbb{R}[X]$
 a) La famille $(P_k)_{k=0}^n$ est étagée en degré, elle est donc libre :
 - si $n = 0$ (P_0) est libre : un seul élément non nul.
 - si $n = 1$ $(1, X)$ est libre : $aX + b = 0 \Rightarrow a = b = 0$
 - si $(P_k)_{k=0}^{n-1}$ est libre. On regarde une combinaison linéaire $\sum_{k=0}^{n} \mu_k P_k = 0$. Il y a un seul terme de degré n qui provient de $\mu_n P_n$. Donc $\mu_n = 0$.
 Par l’hypothèse de récurrence tous les $(\mu_k)_{k=0}^{n-1}$ sont nuls.

On a donc une famille libre de $n + 1$ éléments en dimension $n + 1$, c’est une base
b) La famille $(P_k)_{k=0}^{+\infty}$ est libre puisque toute sous famille $(P_k)_{k=0}^N$ l’est.

Elle est génératrice : Si $P \in \mathbb{R}[X]$ $P \neq 0$, on pose $N = d^2(P)$, on a alors $P \in \mathbb{R}[N][X]$ donc P combinaison linéaire des $(P_k)_{k=0}^N$. Tout polynôme (nul ou non) est donc bien combinaison linéaire d’un nombre fini de P_k

\[(P_k)_{k \in \mathbb{N}} \text{ est une base de } \mathbb{R}[X] \]

c) Si on calcule pour $P_n(K)$ (pour distinguer le k du calcul et celui de l’indice)
 - si $n = 0$ $P_0(K) = P_0(-K) = 1 \in \mathbb{N}$
 - si $K \in [[0, n - 1]]$, il existe $k \in [[0, n - 1]]$, $k = K$. L’un des facteurs du produit est nul donc $P_n(K) = 0$
 - si $K \geq n$, $P_n(K) = \frac{K(K - 1) \cdots (K - n + 1)}{n!} = \frac{K!}{n!(K - n)!} = \binom{K}{n}$ est un entier.
 - dans tous les cas $P_n(-K) = \frac{(-K)(-K - 1) \cdots (-K - n + 1)}{n!} = (-1)^n \frac{(n + K - 1)!}{n!(K - 1)!} = (-1)^n \binom{n + K - 1}{n} \in \mathbb{Z}$

\[\forall n \in \mathbb{N}, \forall K \in \mathbb{N}, P_n(K) \in \mathbb{N}, P_n(-K) \in \mathbb{Z} \]

et de plus $\forall n \in \mathbb{N}, \forall K \in [[0, n - 1]], P_n(K) = 0$

d)
- Soit $P = \sum_{k=0}^{n} \lambda_k P_k$ avec pour tout k, $\lambda_k \in \mathbb{Z}$ alors pour tout $K \in \mathbb{Z}$, $P(K) = \sum_{k=0}^{n} \lambda_k P_k(K)$ est une somme de produits d’entiers, donc un entier.
- Réciproquement si $P = \sum_{k=0}^{n} \lambda_k P_k$ vérifie : $\forall K \in \mathbb{Z}$, $P_k(K) \in \mathbb{Z}$:
 - on prend $K = 0$ on a $P_0(0) = 1$ et $\forall k > 0$, $P_k(0) = 1$ donc $\lambda_0 = P(0) \in \mathbb{Z}$
 - on prend $K = 1$: $\lambda_0 + \lambda_1 + \sum_{0}^{0} = P(1)$ et donc $\lambda_1 = P(1) - \lambda_0 \in \mathbb{Z}$
 - par récurrence forte on suppose $\lambda_0 \cdots \lambda_p$ entiers, et on prend $K = p + 1$:
 $P(p + 1) = \sum_{k=0}^{n} \lambda_k P_k(p + 1) = \sum_{k=0}^{p+1} \lambda_k \binom{p + 1}{k}$
 le dernier terme est $1.\lambda_{p+1}$ et donc :
 $\lambda_{p+1} = P(p + 1) - \sum_{k=0}^{p} \binom{p + 1}{k} \lambda_k \in \mathbb{Z}$

par somme de produits d’entiers.

P a des coordonnées entières dans la base (P_k) ssi $\forall K \in \mathbb{Z}$, $P(K) \in \mathbb{Z}$
2. Étude de Δ

a) On vérifie que pour tous polynômes P et Q et pour tous scalaires λ et μ :
\[
\Delta(\lambda P + \mu Q) = (\lambda P + \mu Q)(X+1) − (\lambda P + \mu Q)(X) = \lambda P(X+1) + \mu Q(X+1) − \lambda P(X) − \mu Q(X) = \lambda(P(X+1) − P(X)) + \mu(Q(X+1) − Q(X)) = \lambda\Delta(P) + \mu\Delta(Q)
\]
Donc Δ est linéaire. Et l’image par Δ d’un polynôme est bien un polynôme.
\[
\Delta \in \mathcal{L}(\mathbb{R}[X])
\]

b) $\Delta(P_0) = 1 - 1 = 0$ et pour $n > 0$:
\[
\Delta(P_n) = \frac{1}{n!} \left(\prod_{k=0}^{n-1} (X+1-k) - \prod_{k=0}^{n-1} (X-k) \right) = \frac{1}{n!} \left(\prod_{k=1}^{n-2} (X-k) - \prod_{k=0}^{n-1} (X-k) \right)
\]
\[
= \frac{1}{n!} \left(\prod_{k=0}^{n-1} (X-k) \right) ((X+1) - (X-n+1)) = \frac{1}{(n-1)!} \left(\prod_{k=0}^{n-1} (X-k) \right) = P_{n-1}
\]
\[
\Delta(P_0) = 0, \forall n \geq 1, \Delta(P_n) = P_{n-1}
\]

c) Tout polynôme se décompose dans la base (P_k)

- si $d^c(P) = d > 0$ alors il existe des $(\lambda_k)_{k=0}^d$ tels que $P = \sum_{k=0}^d \lambda_k P_k$ avec $\lambda_d \neq 0$. On a alors $\Delta(P) = \sum_{k=1}^d \lambda_k P_{k-1}$. On a une combinaison linéaire de polynômes de degrés différents, le degré est donc le maximum des degrés donc $d - 1$ (toujours car $\lambda_d \neq 0$).
- Si $d^c(P) = 0$, $d^c(\Delta(P)) = -\infty$.

Δ diminue de 1 le degré de tout polynôme non constant et $\Delta(1) = 0$ donc $\forall P, d^c(\Delta(P)) \leq d^c(P) - 1$, donc si $d^c(P) = d$ alors $d^c(\Delta^{d+1}(P)) \leq -1$ donc $\Delta^{d+1}(P) = 0$ si $d^c(P) = d > 0$, $d^c(\Delta(P)) = d - 1$ et pour tout d $\Delta^{d+1}(P) = 0$

\[d)\text{D’après l’étude des degrés : } d^c(P) > 0 \Rightarrow P \notin \text{Ker}(\Delta) \text{ et } d^c(P) = 0 \Rightarrow P \in \text{Ker}(\Delta)\]
\[
\text{Ker}(\Delta) = \mathbb{R}_0[X]
\]

le noyau n’est pas réduit à {0} donc Δ n’est pas injective.

Tout polynôme $P = \sum_{k=0}^d \lambda_k P_k$ admet, (d’après les calculs précédents) au moins un antécédent $\sum_{k=0}^d \lambda_k P_{k+1}$

Δ est surjective, non injective

3. Expression dans la base:

a) comme $\Delta(P_n) = P_{n-1}$ si $n \geq 1$ et $\Delta(P_0) = 0$ on a $\Delta^k(P_n) = \left\{ \begin{array}{ll} 0 & \text{si } k > n \\ P_{n-k} & \text{si } k \leq n \end{array} \right.$

De plus $P_0(0) = 1$ et $P_{n-k}(0) = 0$ si $n - k > 0$ donc $\Delta^k(P_n)(0) = \left\{ \begin{array}{ll} 0 & \text{si } k > n \\ 1 & \text{si } k = n \soit\Delta^k(P_n)(0) = \delta_{k,n} \\ 0 & \text{si } k < n \end{array} \right.$

b) On sait que si $d = d^c(P)$ on a une décomposition $P = \sum_{n=0}^d \lambda_n P_n$. On a donc $\Delta^k(P)(0) = \sum_{n=1}^d \lambda_n \Delta^k(P_n)(0)$. Tous les termes de la somme sont nuls sauf pour $k = n$; et si $k = n$, $\Delta^k(P_n)(0) = 1$. Il reste donc $\lambda_k = \Delta^k(P)(0)$ et donc $P = \sum_{n=0}^d \Delta^n(P)(0) P_n$. Enfin pour $n > d$, $\Delta^n(P) = 0$ donc $\sum_{n=d+1}^{+\infty} \Delta^n(P)(0) P_n = 0$. Donc
\[
\forall P \in \mathbb{R}[X], P = \sum_{n=0}^{+\infty} \Delta^n(P)(0) P_n
\]
4. a) Dans la base \((P_k)\) on a \(\Delta_d(P_0) = 0\) et pour \(n > 0\), \(\Delta_d(P_n) = P_{n-1}\) donc \(\text{Mat}(\Delta_d) = M = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}\).

On a une matrice \((d+1) \times (d+1)\) pour coefficients \(m_{i,j} = \begin{cases} 1 & \text{si } i = j - 1 \\ 0 & \text{sinon} \end{cases}\)

Dans la base \((X_k)\) on a \(\Delta_d(X_k) = (X + 1)^k - X^k = \sum_{j=0}^{k-1} \binom{k}{j} X^j\) donc \(\text{Mat}(\Delta_d) = M = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & \binom{2}{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & \binom{n}{1} & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}\).

On a une matrice \((d+1) \times (d+1)\) pour coefficients \(m_{i,j} = \begin{cases} (j-1) & \text{si } j > i \\ 0 & \text{sinon} \end{cases}\)

b) La matrice est triangulaire, les valeurs propres sont les termes diagonaux. La seule valeur propre de \(\Delta_d\) est 0. Le sous-espace propre est le noyau \(\mathbb{R}_0[X] \neq \mathbb{R}_d(X)\) car ici \(d \geq 1\)

\(\Delta_d\) n’est pas diagonalisable

On sait que pour \(n \leq d\), \(\Delta_d^{d+1}(P_n) = 0\) l’image d’une base caractérise l’application donc \(\Delta_d^{d+1} = 0\)

Remarque : par contre \(\Delta_d^{d+1}\) est surjective (donc non nul) pour tout \(d\).

Partie II : approximation de dérivées

5. On peut rédiger une récurrence en utilisant la formule de Pascal.

Il est plus simple d’introduire l’endomorphisme \(T : P^\to \to P(X + 1)\) On a alors \(T^j(P) = P(X + j)\) et \(\Delta = T - Id\).

Comme \(T\) et \(Id\) commutent on peut écrire : \(\Delta^n = (T - Id)^n = \sum_{j=0}^{n} \binom{n}{j} T^j \circ (Id)^{n-j} = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} T^j\) et donc :

\(\forall \varphi \in \mathbb{R}[x], \forall n \in \mathbb{N}, \Delta^n(P) = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(X + j)\)

6.

a) On décompose \(X^n = \sum_{k=0}^{n} \lambda_k P_k\).

- Le seul terme de degré \(n\) donne : \(1 = \lambda_n \frac{1}{n!}\) donc \(\lambda_n = n!\)
- On a \(\Delta^n(X^n) = \sum_{k=0}^{n} \lambda_k \Delta^n(P_k) = \lambda_n + \sum 0 = \lambda_n = n!\)
- La relation \(\Delta^n(X^n) = \sum_{j=0}^{n} (-1)^{n-j} (X + j)^n\) donne \(n! = \sum_{j=0}^{n} (-1)^{n-j} (X + j)^n\). La valeur en 0 donne :

\(\forall n \in \mathbb{N}, n! = \sum_{j=0}^{n} (-1)^{n-j} \frac{n!}{j^n}\)
b) sur le même principe pour $k < n \Delta^n(X^k) = 0$ et donc :

$$\forall n \in \mathbb{N}, \forall k \in [[0, n - 1]], 0 = \sum_{j=0}^{n} (-1)^{n-j} j^k$$

7.

a) On a comme la fonction est C^n :

$$f(a + h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^k + o(h^n)$$

et plus généralement :

$$f(a + jh) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} j^k h^k + o(h^n)$$

Par combinaison linéaire des expressions précédentes on a :

$$h^n A_n(h) = \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \left(\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} j^k h^k + o(h^n) \right)$$

$$= \sum_{k=0}^{n} h^k \frac{f^{(k)}(a)}{k!} \left(\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} j^k \right) + o(h^n)$$

car :

- les sommes sont finis, on peut donc permuter les \sum sans danger
- une combinaison linéaires de fonctions négligeables devant h^n est toujours négligeable.

D’après la question précédente, toute les \sum sont nuls sauf pour $k = n$

$$h^n A_n(h) = h^n f^{(n)}(a) + o(h^n)$$

En divisant par h^n : $A_n(h) = f^{(n)}(a) + o(1)$

$$\lim_{h \to 0} (A_n(h)) = f^{(n)}(a)$$

Somme des puissance des entiers

8.

a) On a

$$\sum_{k=0}^{p} \Delta(Q)(k) = \sum_{k=0}^{p} (Q(k+1) - Q(k)) = Q(p+1) - Q(0)$$

par télscopage.

b) On a $P_1 = X$, $P_2 = \frac{X(X - 1)}{2} = \frac{X^2 - X}{2}$ $P_3 = \frac{X(X - 1)(X - 2)}{6} = \frac{X^3 - 3X^2 + 2X}{6}$.

On peut résoudre et utiliser $P_k = \Delta(P_{k+1})$:

$$X = P_1 = \Delta(P_2) = \Delta \left(\frac{X(X - 1)}{2} \right)$$

$$X^2 = 2P_2 + X = 2P_2 + P_1 = \Delta(2P_3 + P_2) = \Delta \left(\frac{2X(X - 1)(X - 2)}{6} + \frac{X(X - 1)}{2} \right) = \Delta \left(\frac{X(X - 1)(2X - 1)}{6} \right)$$

$$X^3 = 6P_3 + 3X^2 - X = 6P_3 + 6P_2 + P_1 = \Delta(6P_4 + 6P_3 + P_2) = \Delta \left(\frac{X^2(X - 1)^2}{4} \right)$$

c) On utilise les deux résultats précédents :

$$\sum_{k=0}^{p} k^j = \sum_{k=0}^{p} \Delta(Q_j)(k) = Q_j(p+1) - Q_j(0) = Q_j(p+1) \text{ car } Q_j(0) = 0$$
9.

a) Sans problème

\[\Delta(P)' = P'(X + 1) - P'(X) = \Delta(P') \]

b) Si la suite \(B_n \) existe :

- \(\forall n \geq 1 \); \(\Delta(B_{n+1} - nB_n) = (\Delta(B_{n+1}))' - n\Delta(B_n) = (X^n)' - nX^{n-1} = 0 \)
 Donc \(B_{n+1} - nB_n \in \text{Ker}(\Delta) \).
- Pour \(n \geq 1 \) on a \(\Delta(B_{n+1}) = X^n \) donc \(B_{n+1}(X + 1) - B_{n+1}(X) = X^n \).
 Si on prend \(X = 0 \); \(B_{n+1}(1) = B_{n+1}(0) \)
- On a \(\Delta(X) = 1 \), donc \(\Delta(B_1 - X) = 0 \), donc \(\Delta(B_1 - X) \in \text{Ker}(\Delta) \)
 il existe une constante telle que \(B_1 = X + Cste. \)

D'où les 3 propriétés voulues.

c) On vérifie que

- Si \(B_1 = X + Cste; \Delta(B_1) = \Delta(X) = 1 = X^0 \)
- On suppose que \(n \geq 1 \) et \(\Delta(B_n) = X^{n-1} \).
 On a \(\Delta(B_{n+1} - nB_n) = 0 \) et donc \((\Delta(B_{n+1}))' = \Delta(B_{n+1}) = n\Delta(B_n) = nX^n \)
 On a donc en prenant une primitive : \(\Delta(B_{n+1}) = X^{n+1} + K_n \) avec \(K_n \in \mathbb{R} \)
 La condition \(B_{n+1}(0) = B_{n+1}(1) \) donne \(\Delta(B_{n+1})(0) = 0 \) et donc \(K_n = 0 \)
- On a bien vérifié par récurrence que \(\forall n, \Delta(B_{n+1}) = X^n \) si et seulement si :
 \[
 \begin{cases}
 \forall n \geq 1, & B_{n+1}' = nB_n \\
 \forall n \geq 1, & B_{n+1}(1) = B_{n+1}(0) \\
 B_1 \text{ est unitaire de degré 1}
 \end{cases}
 \]

10. a) On suppose vrai les propriétés 1 et 3 et on montre l’équivalence des deux autres propriétés :

\[
\forall n \geq 1, \int_0^1 B_n(t)dt = \int_0^1 \frac{B_{n+1}'(t)}{n} dt = \frac{B_{n+1}(1) - B_{n+1}(0)}{n}
\]

d'où le résultat.

b) On a successivement :

- \(B_1 = X + k_1 \) et comme \(\int_0^1 B_1 = \frac{1}{2} + k_1 = 0 \) on a \(B_1 = X - \frac{1}{2} \)
- \(B_2 = B_1 + B_2 = \frac{X^2}{2} - \frac{X}{2} + k_2 \) avec la condition : \(\frac{1}{6} - \frac{1}{4} + k_2 = 0 \) et donc \(k_2 = \frac{1}{6} \)
 \(B_2 = \frac{X^2}{2} - \frac{X}{2} + \frac{1}{12} \)
- \(B_3' = 2B_2 = X^2 - X + \frac{1}{6} \) : \(B_3 = \frac{X^3}{3} - \frac{X^2}{2} + \frac{X}{6} + k_3 \) avec \(\frac{1}{12} - \frac{1}{6} + \frac{1}{12} + k_3 = 0 \)
 \(B_3 = \frac{X^3}{3} - \frac{X^2}{2} + \frac{X}{6} \)
- \(B_4' = 3B_3 = X^3 - \frac{3X^2}{2} + \frac{X}{2} \) donc \(B_4 = \frac{X^4}{4} - \frac{X^3}{2} + \frac{X^2}{4} + k_4 \) avec \(\frac{1}{12} - \frac{1}{6} + \frac{1}{8} + k_4 = 0 \)
 \(B_4 = \frac{X^4}{4} - \frac{X^3}{2} + \frac{X^2}{4} - \frac{1}{120} \)

b) On retrouve :

\[
\sum_{k=0}^n \Delta(B_2)(k) = B_2(p + 1) - B_2(0) = \frac{p(p + 1)}{2}
\]
\[
\sum_{k=0}^{p} k^2 = B_3(p+1) - B_3(0) = \frac{p(p+1)(2p+1)}{6}
\]
\[
\sum_{k=0}^{p} k^3 = B_4(p+1) - B_4(0) = \left(\frac{p(p+1)}{2} \right)^2
\]

c) Vériions par récurrence l’existence et l’unicité de la suite \((B_n) \) et \(B_n \in \mathbb{Q}_n[X] \)

- \(B_1 = X - \frac{1}{2} \) est un polynôme unique et ses coefficients sont rationnels
- Supposons qu’il existe un unique polynôme \(B_n \) et que \(B_n \in \mathbb{Q}_n[X] \)

On peut donc écrire \(B_n = \sum_{k=0}^{n} b_k X^k \) avec pour tout \(k \) \(b_k \in \mathbb{Q} \).

La relation \(B_{n+1}' = nB_n \) donne \(B_{n+1} = \sum_{k=0}^{n} \frac{n}{k+1} b_k X^{k+1} + c_{n+1} \) avec \(\frac{n}{k+1} b_k \in \mathbb{Q} \)

La relation \(\int_0^1 B_{n+1}(t) dt \) donne \(c_{n+1} = -\sum_{k=0}^{n} \frac{n}{(k+1)(k+2)} b_k \in \mathbb{Q} \)

et donc \(B_{n+1} = \sum_{k=0}^{n} \frac{n}{k+1} b_k X^{k+1} - \sum_{k=0}^{n} \frac{n}{(k+1)(k+2)} b_k \in \mathbb{Q}_{n+1}[X] \)

On a donc trouvé un unique polynôme \(B_{n+1} \) et \(B_{n+1} \in \mathbb{Q}_{n+1}[X] \)

c) En utilisant Maple pour rédiger l’algorithme on peut proposer une procédure non récursive avec tableau :

```maple
>B:=proc(n) locan B,i,c ;
>   B[1]:=X-1/2;
>   for i from 1 to n-1 do
>       B[i+1]:=int(i*B[i],X);
>       c:=int(B[i+1],X=0..1);
>       B[i+1]:=B[i+1]-c;
>   od;
> end;
```